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Inverse problems are considered for the motion of an impurity in a carrier gas 
passing through a porous sorbent; the response function may be determined from 
output data along the inlet concentration. 

The direct problem for an impurity moving in a carrier gas is to determine the concen- 
tration at the exit from a porous medium in terms of the known parameters of the medium and 
the input concentration. There are many papers on such topics [1-5]. Inverse problems are 
equally important, and these include the following: I) determination of the input concentra- 
tion fromtheknown response of the medium and the measured output concentration; 2) deter- 
mination of the response from the known concentrations at input and output; and 3) determina- 
tion of the parameters of the porous medium. These aspects are considered here. 

The linear approximation is used with constant diffusion coefficients and a constant 
kinetic sorption coefficient in discussing the physical processes for a gas moving in a por- 
ous column [6]; let ~(z) be the concentration of the gas supplied to the column and G(/, t) 
be the response; then the concentration at the output u(l, t) is given by 

t 

u (l,  t) = .( G (l, t - -  x) ~o (T) dr. 
0 

(1) 

Equation (i) is a Fredholm integral equation of the first kind of convolution type; the de- 
rivation of ~(T) (or of G(/, t)) from (I) is therefore a problem of inverse type and requires 
the use of special methods. 

Tikhonov [7, 8] laid the basis of the fundamental regularization method, which involves 
constructing an approximate solution to (i) (or to more general equations) by means of regu- 
larizing operators [9]. There are deterministic and nondeterministic (statistical) methods 
of constructing such operators. The statistical methods are convenient if the right side in 
(i) is a random function, as is the solution, and perhaps also the kernel. Examples are func- 
tions obtained by measurement. In some cases, statistical methods can provide an optimal 
solution to (i), including considerable improvement over the solutions obtained by determinis- 
tic methods [i0]. Here we solve (i) by the method of [ii], which provides a suboptimal solu- 
tion that is acceptable in the presence of errors on the right and in the kernel of (i). 

To determine ~(T) from the known u(/, t) by means of (i) we need to know G(/, t); dif- 
fusion causes broadening, and the process is of nonequilibrium type, so we assume that a Henry 
sorption isotherm applies, and then the following analytic expression is obtained [6]: 

G (l, 0 = Gt (l, 0 -f- Gz (l, t), 

{ (l--v/)' } 
G t ( t ,  t) = u o ( 4 n D t D - ~ / 2 e x p  - - t ( ~ +  ~). 4Dt ' 

�9 ( 2 )  
G 2 (l,  l) = uo~lV 1/2 (~D) -1/2 exp {-- t (k + ~?)}X 

t 

- -  (l - -  vT)21 dx. • ~ - '  (t--T)-','V, (2~-~V'vx(t--#)exp{--l~(l--V) 4Dx l 
0 

Here X is the reciprocal of the Henry coefficient and uo is a constant. 
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Expression (2) contains the parameters of the medium and impurity such as the diffusion 
coefficient D and the kinetic sorption coefficient B, on which no data are usually available, 
while no good methods of measurement exist either. It is therefore of Considerable interest 
to be able to determine the response parameters by experiment. Here we show that the response 
function can sometimes be measured directly. 

We first consider methods of determining the response and the conditions under which 
direct measurement is possible; let Tin be the length of the concentration pulse ~(z) at the 
input, which is to be determined from (i). The response is essentially a Green's function 
for the corresponding Cauchy problem [6], so one expects that G(/, t) can be measured direct- 
ly if a 6 pulse is applied to the input of length tin << Tin , while tou t is the length 
of the pulse at the output (the length of the measured response). Numerical implementation 
is the most complicated when Tin,lS comparable with the duration of the response or Tin 
tout, and the condition tin << Tin may be put as 

t~. ~ to~ v (3) 

Clearly, the measured response can be used to determine ~(z) for any relation Tin > Tin if 
this condition is met. 

However, obedience to (3) alone is insufficient for direct measurement of G(/, t) since 
(i) describes the transport by the gas on the assumption that a Henry isotherm applies; there- 
fore, G(/, t) should not be measured with an excessive input (large amount of impurity). If 
tin is fixed, the second condition can be considered as a condition on the impurity concentra- 
tion. 

The acceptable limits to tin/tou t and the upper bound to the input concentration have 
been derived from experiment; a given column length and given impurity level gave results 
for G(/, t) that agreed to within 4% for tin/tou t of 1/120, 1/60, 1/30; measurements were 
not made with higher values of the ratio, while lower values were difficult to realize. It 
was also found that the concentration of the added gas (xenon) could be as high as 6% for 
the 1/30 ratio. 

The response function can also be determined in another way. The replacement e = t -- 
in (i) results again in a convolution: 

t 

u(l, O = ~G(l, ~)w(t--~)d~, (4) 
o 

b u t  now f o r  G(1,  ~) w i t h  known u ( / ,  t )  and ~ ( T ) ;  one can  m e a s u r e  t h e  c o n c e n t r a t i o n a t  i n p u t  
and o u t p u t  t o  d e t e r m i n e  G ( / ,  ~) by s o l v i n g  t h i s  e q u a t i o n .  N u m e r i c a l  d e t e r m i n a t i o n  o f  t h e  
p u l s e  r e s p o n s e  ( r e s p o n s e  f u n c t i o n )  can  be p e r f o r m e d  by  r e g u l a r i z a t i o n  w i t h  f a s t  F o u r i e r  
t r a n s f o r m a t i o n  [12] f rom r e c o r d i n g s  o f  t h e  i n p u t  and o u t p u t  s i g n a l s  employed ,  a l t h o u g h  t he  
method d e s c r i b e d  i n  t h a t  p a p e r  was f a i r l y  c o m p l i c a t e d .  

The p a r a m e t e r s  o f  t h e  medium may be d e t e r m i n e d  and t h e  model  may be  compared w i t h  t h e  
a c t u a l  p r o c e s s e s  g o v e r n i n g  t h e  gas  m o t i o n  by f i t t i n g  an a n a l y t i c a l  e x p r e s s i o n  t o  ( 2 ) ;  t h e  
i n t e g r a n d  i n  (2) c a n  be w r i t t e n  as  t h e  p r o d u c t  o f  two f u n c t i o n s ,  each  o f  which may h a v e  a 
d i s t i n c t  s h a r p  peak  as a f u n c t i o n  o f  t h e  r e l e v a n t  p a r a m e t e r s .  I f  t h e  d i f f u s i o n  c o e f f i c i e n t  
D is small, i.e., 

D ~ .  (5) 

t h e  maximum in  t h e  i n t e g r a n d  may be found  b y  means o f  

/ (l - -  v ~  
4D~ ]" exp 

% 

In  p r a c t i c e ,  (5)  i s  u s u a l l y  me t .  The saddle-point method gives us from (2) that 

. . . . . . . .  

G2 (l, 0 = ~ v  It (2~v-' V y l  (vt - -  l)) exp {--~?tv- ' - -~v-J( l  - -  ?) t}. (6)  

Also, (6) can be put in the following form via the asymptotic representation for a Bessel 
function of imaginary argument : 

G2 (l, t) = A (t, 0 exp {--  (l - -  tm)2](2o~)}, (7) 
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Fig. i. Comparison of i) calculated response; 2) 
measured response; t in ~in. 

Fig. 2. Response function measured in simulation. 

,4q, 0 = (~-')'<2(~,O'<'(,,t-,-, 0-~< 4; t,~ = l(~ + v) ," 

~ = (2tsv'v)-'~ ( V v ( v t - 0  + VF). (8) 

The other maximum in the integrand is determined by the second function Ix(2Bv-I/yz(t -- z))exp 
{--ST(I + T)}; the contribution to the integral of (2) from this maximum can be derived for 
8t >> (i + T)~[y(y -- I)] by analogy with (7) with the value for t m as in (8) but with the half- 
width 

O'D = v-iy -1/2 [2D(I + y) t]I/< (9) 

For values ~t >> 1 the response G(~, t) is determined by the G~(l, t) term, while the half- 
width is governed by the diffusion and the adsorption. The overall half-width of G(l, t) is 
thus composed of the values from (8) and (9) 

a ~_ ~ + o<,o. (lO) 

If all the parameters of the medium and the impurity are known apart from the kinetic sorp- 
tion coefficient ~ and the diffusion coefficient D, it is possible to determine B and D un- 
ambiguously from (i0) because the half-width of the response increases with D and as B de- 
creases, while any fall in B displaces the peak in the function. 

For example, measurements were made with the parameters v = 2.514 cm/min, I = 300 cm, 
y = 0.60466 and the response had ~ = 0.524 min, whereupon (i0) becomes 

a 0.425 = 0,0334 ] / ' -D-+ 23.5611/' ~'. 

Fitting to the measured response gave D 77.1 = " = cm /mln, ~ = 6.4 - 104 min -x. 

Figure 1 shows examples of the measured and calculated response functions that indicate 
the fit of the model to the processes. 

Although the response can be measured directly, analytical representation is of con- 
siderable importance, since it is possible to measure G(l, t) for a column of length ZI and 
then to derive the response for a column of length Z2, or alternatively to predict the fea- 
tures of a column for other values of the gas and filling parameters, especially in the de- 
sign of columns with preset parameters. 

We assume that G(l, t) has been determined in order to discuss briefly the technique for 
solving (I) by the method of [ii]. An approximate solution @(T) is sought in the form 

~(~) = 1 [ i K(--~)~U(r exp(-- iot)d~,  
~_j K(~) K(-- 0 + n,(o~ (ll) 
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Fig. 3. Xenon concentrations: a)measured at 
outlet of porous column in model experiments; 
b) recovered for input of porous column from 
measured data. 

where K(m) and U(m) are the Fourier transforms of G(1, t) and u(1, t) (parameter 1 has been 
omitted in the Fourier transforms), while the function R2(m) > 0 is chosen to be such as to give 
a suboptimal solution stable in the presence of small perturbations in U(1, t) and G(1, T). 
The integral in (Ii) is replaced by an integral sum, and the variances of K(mi) and U(m i) are 
calculated at each step in the integrationwithrespect to m on the basts of the quadrature 
formula used for U(m) and K(~), where the number R2(mi) is constructed in accordance with the 
following rule: 

f3.5o~ + 26~pF 2, if ~ i ~ = S i a n d r i ~ = ~ ,  R2(~i) 
00, if ~ i < o ~ i  or r i < ~  i, (12) 

where 

6~ = max {D [Re U (o31, D [Ira U (oi)l}; 

2 max {D IRe K (oi)], D [Ira K (~31}; 

i n  which  D i s  t he  d i s p e r s i o n  o p e r a t o r  and r i = t K ( ~ i ) [ ,  n i  = I U ( ~ i ) [ ;  P i  -- n i / r i ;  t h e  pa ram-  
e t e r  a > 0 i s  ~he c u t o f f  p a r a m e t e r ,  wh ich  s p e c i f i e s  t h e  s i g n a l - t o - n o i s e  r a t i o  be low which  t h e  
c o n t r i b u t i o n  t o  the  i n t e g r a l  sun f o r  (11) i s  d i s c a r d e d .  E s t i m a t e s  [11] and p r a c t i c a l  c a l c u -  
l a t i o n s  show t h a t  a l i e s  i n  t h e  r a n g e  2 . 0 - 4 . 5 ,  and t h e  e r r o r  l e v e l s  o f  u ( 1 ,  t )  and G(1, t )  
a r e  known o n l y  a p p r o x i m a t e l y ,  so  we c a n  assume t h a t  a = 3. More e x a c t  d e t e r m i n a t i o n  o f  t he  
s o l u t i o n  i s  p o s s i b l e  i f  a p r i o r i  i n f o r m a t i o n  i s  a v a i l a b l e  on t he  s o l u t i o n  o r  on t h e  modulus  
o f  t h e  F o u r i e r  t r a n s f o r m .  F o r  example ,  t h e  d e s i r e d  s o l u t i o n  may be c o n t i n u o u s ,  i n  which c a s e  
0(w) = O ( a - : ) ,  and t h e r e f o r e  t h e  w e a k - s i g n a l  c o n t r i b u t i o n  can be  i n c o r p o r a t e d  by t a k i n g  
R2(~i)  = a i ~ i ,  where  p a r a m e t e r  a i s  d e r i v e d  f rom t h e  c o n d i t i o n  f o r  c o n t i n u i t y  o f  O ( ~ i ) v e c t o r .  

Methods d e v e l o p e d  f o r  d e f i n i n g  ~(T)  have  been a p p l i e d  t o  a d v a n t a g e  in  p r a c t i c a l  p r o b l e m s ;  
an example  i s  t h e  p r o c e s s i n g  o f  d a t a  f rom a s i m u l a t i o n  e x p e r i m e n t  i n  which a gas i m p u r i t y  was 
s u p p l i e d  t o  a column in  a c c o r d a n c e  w i t h  a known r e l a t i o n s h i p .  The i n p u t  c o n c e n t r a t i o n  was 

~ (z) = { O~~ > ~ t ~< T' 

The r e s p o n s e  f u n c t i o n  was measured  as d e s c r i b e d  a b o v e ;  the  t i n / t o u t  r a t i o  was 1 / 6 0 .  F i g u r e  
2 and F i g .  3a show t h e  measured" G(1, t )  and u ( 1 ,  t ) ;  no a p r i o r i  i n f o r m a t i o n  was used  i n  s o l v -  
i ng  ( t ) .  

A T s v e t - 1 0 6  gas  c h r o m a t o g r a p h  was used t o  r e c o r d  t h e  i n i t i a l  ch romatograms  ; t h e  m e a s u r e -  
ments  were made with a thermal-conductivity detector. Each column was of length 3 m and filled 
with synthetic NaX xeolite. The grain-size fraction 0.15-0.25 mm was used. The column was 
prepared by flushing with carrier gas for over 24 h (high-purity helium at 360~ which 
eliminated adsorbed water and carbon dioxide. The measurements were made under isothermal 
conditions with the column at 50~ The amounts used (0.25cm, 0.5, 5.0, and 33 cm ~) were 
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dispensed with an error of 1%. The impurity was xenon diluted with helium, and the possible 
distortion in the emergent peak arising from overload was examined by using mixtures with 
xenon contents of 0.01, 0.i, and 1% by volume. A correction was also applied for the distor- 
tion of the peak on account of the finite detector volume. The characteristic and transit 
times for the sensitive volume of the catharometer were not more than 0.3 sec, and it was 
found that these sources of distortion could be neglected. 

A characteristic feature of a Fourier transformation is that it cannot provide a close 
fit to a steep edge or (especially) a discontinuity in the function resulting from numerical 
inversion, and therefore to the solution of (i). Instead, one obtains rounded steps, and 
therefore the half-width of the solution increases, as does the length of the nonzero range. 
However, one can readily identify the region in which the solution actually is different from 
zero. If u(/, t) differs from zero over the range t~[a, b], G(/, t) does the same over [c, d], 
and the solution is nonzero in the range [e-c, b-d]. The solid line in Fig. 3b shows the solu- 
tion obtained with this method of identifying the nonzero region. 

The error level in this solution arising from errors in u(/, t) and G(/, t) was esti- 
mated as follows: the measured functions u(l, t) and G(/, t) were corrupted with noise whose 
level was equal to the error level in the measurements (2%) by means of various sequences of 
random numbers, and ~(T) was recovered for each of these. The broken lines in Fig. 3b show 
the recovery results, which indicate the error band. Only a priori information on the solu- 
tion can give better results for the given error level. 

NOTATION 

~(r), input gas concentration; u(/, t), output gas concentration; G(/, t), response 
funetlon; uo, constant; D, diffusion coefficient; ~, kinematic sorption coefficient; y, re- 
ciprocal of the Henry coefficient; ~, radioactive-decay constant; l, column length; ~, inte- 
gration parameter; Tin , length of~(T) pulse at the inlet; ~, gas flow velocity; K(~) and 
U(~), Fourier transforms of G(/, t) and u(/, t). 
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